본문 바로가기

재미있는 것들

기계학습 학습 종류에 따른 분류

기계학습 학습 종류에 따른 분류


기계학습 문제들을 학습 종류에 따라 3가지로 나눌 수 있다.. 

특히, 레이블(label)의 유무에 따라 지도학습과 비지도학습으로 나뉘는데, 

여기서 레이블이란, 학습 데이터의 속성을 무엇을 분석할 지에 따라 정의되는 데이터를 뜻한다.


1. 지도 학습(Supervised Learning): 

사람이 교사로써 각각의 입력(x)에 대해 레이블(y)을 달아놓은 데이터를 컴퓨터에 주면 컴퓨터가 그것을 학습하는 것이다. 

사람이 직접 개입하므로 정확도가 높은 데이터를 사용할 수 있다는 장점이 있다. 

대신에 사람이 직접 레이블을 달아야 하므로 인건비 문제가 있고, 따라서 구할 수 있는 데이터양도 적다는 문제가 있다.


  1) 분류(Classification): 레이블 y가 이산적(Discrete)인 경우 즉, y가 가질 수 있는 값이 [0,1,2 ..]와 같이 유한한 경우 분류, 혹은 인식 문제라고 부른다. 

일상에서 가장 접하기 쉬우며, 연구가 많이 되어있고, 기업들이 가장 관심을 가지는 문제 중 하나다. 

이런 문제들을 해결하기 위한 대표적인 기법들로는 로지스틱 회귀법, KNN, 서보트 벡터 머신 (SVM), 의사 결정 트리 등이 있다.아래와 같은 예시가 있다.


    ㄱ) 주차게이트에서 번호판 인식: 요새 주차장들은 티켓을 뽑지 않고, 차량 번호판을 찍어서 글자를 인식하는데 정확도를 높인다. 번호판른 정형화 되어있으므로 전통적인 컴퓨터 비전으로도 처리는 가능하나, 오염 등에 대해 정확도를 높이자면 기계학습을 하면 더 좋다. 이미지 픽셀 값들에 따라 숫자 글자를 분류한다.


    ㄴ) 페이스북이나 구글 포토의 얼굴 인식: 역시 컴퓨터 비전을 이용하되 기계학습을 결합. 페이스북에 사진을 올리면 친구 얼굴 위에 이름이 자동으로 달리고는 하는데, 이것 역시 기계학습을 이용한 것. x가 이미지 픽셀, y가 사람 이름인 경우.


    ㄷ) 음성 인식: 음성 wav 파일에 대해서 해당 wav 부분이 어떤 음절인지를 인식하는 것. 애플 시리, 구글 보이스 등에서 사용된다(질문에 대해서 답해주는 부분 말고, 인식 부분만). x가 음성 파형, y가 음절.


  2) 회귀(Regression): 레이블 y가 실수인 경우 회귀문제라고 부른다. 보통 엑셀에서 그래프 그릴 때 많이 접하는 바로 그것이다. 데이터들을 쭉 뿌려놓고 이것을 가장 잘 설명하는 직선 하나 혹은 이차함수 곡선 하나를 그리고 싶을 때 회귀기능을 사용한다. 잘 생각해보면 데이터는 입력(x)와 실수 레이블(y)의 짝으로 이루어져있고, 새로운 임의의 입력(x)에 대해 y를 맞추는 것이 바로 직선 혹은 곡선이므로 기계학습 문제가 맞다. 통계학의 회귀분석 기법 중 선형회귀 기법이 이에 해당하는 대표적인 예이다.


2. 비지도 학습(Unsupervised Learning): 사람 없이 컴퓨터가 스스로 레이블 되어 있지 않은 데이터에 대해 학습하는 것. 즉 y없이 x만 이용해서 학습하는 것이다. 정답이 없는 문제를 푸는 것이므로 학습이 맞게 됐는지 확인할 길은 없지만, 인터넷에 있는 거의 모든 데이터가 레이블이 없는 형태로 있으므로 앞으로 기계학습이 나아갈 방향으로 설정되어 있기도 하다. 통계학의 군집화와 분포 추정 등의 분야와 밀접한 관련이 있다.

  

  1)군집화(Clustering): 데이터가 쭉 뿌려져 있을 때 레이블이 없다고 해도 데이터간 거리에 따라 대충 두 세개의 군집으로 나눌 수 있다. 이렇게 x만 가지고 군집을 학습하는 것이 군집화이다.


  2)분포 추정(Underlying Probability Density Estimation): 군집화에서 더 나아가서, 데이터들이 쭉 뿌려져 있을 때 얘네들이 어떤 확률 분포에서 나온 샘플들인지 추정하는 문제이다.


3. 반지도 학습 (Semisupervised learning): 레이블이 있는 데이터와 없는 데이터 모두를 활용해서 학습하는 것인데, 대개의 경우는 다수의 레이블 없는 데이터를 약간의 레이블 있는 데이터로 보충해서 학습하는 종류의 문제를 다룬다.


4. 강화 학습(Reinforcement Learning): 위의 두 문제의 분류는 지도의 여부에 따른 것이었는데, 강화학습은 조금 다르다. 

강화학습은 현재의 상태(State)에서 어떤 행동(Action)을 취하는 것이 최적인지를 학습하는 것이다. 

행동을 취할 때마다 외부 환경에서 보상(Reward)이 주어지는데, 이러한 보상을 최대화 하는 방향으로 학습이 진행된다. 

그리고 이러한 보상은 행동을 취한 즉시 주어지지 않을 수도 있다(지연된 보상). 이 때문에 문제의 난이도가 앞의 두개에 비해 대폭 상승하며, 

시스템을 제대로 보상하는 것과 관련된 신뢰 할당 문제 라는 난제가 여전히 연구원들을 괴롭히고 있다.

대표적으로 게임 인공지능을 만드는 것을 생각해볼 수 있다. 체스에서 현재 나와 적의 말의 배치가 State가 되고 여기서 어떤 말을 어떻게 움직일지가 Action이 된다. 

상대 말을 잡게 되면 보상이 주어지는데, 상대 말이 멀리 떨어져 이동할 때 까지의 시간이 필요할 수 있으므로, 

상대 말을 잡는 보상은 당장 주어지지 않는 경우도 생길 수 있다. 심지어는 그 말을 잡은 것이 전술적으로는 이익이지만 판세로는 불이익이라 다 끝났을 때 게임을 질 수도 있다.

 (지연된 보상). 따라서 강화학습에서는 당장의 보상값이 조금은 적더라도, 나중에 얻을 값을 포함한 보상값의 총 합이 최대화되도록 Action을 선택해야 하며, 

게다가 행동하는 플레이어는 어떤 행동을 해야 저 보상값의 합이 최대화되는지 모르기 때문에, 

미래를 고려하면서 가장 좋은 선택이 뭔지 Action을 여러 방식으로 수행하며 고민해야 한다. 

좋은 선택이 뭔지 Action을 찾는 것을 탐색, 지금까지 나온 지식을 기반으로 가장 좋은 Action을 찾아 그것을 수행하는 것을 활용한다고 하여, 

강화학습을 푸는 알고리즘은 이 둘 사이의 균형을 어떻게 잡아야 할지에 초점을 맞춘다. 위 방법들과는 다르게 실시간으로 학습을 진행하는 게 일반적이다.



'재미있는 것들' 카테고리의 다른 글

신혜정(申惠晶, Shin Hye-Jeong) 그룹 활동  (0) 2018.01.25
1987영화와 실화와의 차이  (0) 2018.01.02
기계학습 정의  (0) 2017.09.25
소설 장화홍련  (0) 2017.09.19
USB PS2 젠더 키보드용  (0) 2017.08.09